	[image: image1.png](7=

&
/)

	External DLLs creation for custom indicators (VB .NET 2005)

1. Files included.

AssemblyInfo.vb contain information about assembling the FTCalc_Example.vbproj project.

External DLLs.DOC is this file

FTCalc_Example.vbproj is the project file for VB .NET 2005.

FTCalcCommon.vb contain common routines, belongs to the FTCalc_Example.vbproj project.

Information.vb contain the class with the basic information for the Fibonacci Trader software, belongs to the FTCalc_Example.vbproj project.

Moving_Avg_Example.vb contain the parameters and calculation of an example moving average, belongs to the FTCalc_Example.vbproj project.

UpgradeSupport.vb contain the information about the Upgrade from VB6, belongs to the FTCalc_Example.vbproj project.

Make a copy of all files.

2. Using Visual Basic .NET open the project FTCalc_Example.vbproj.
The file FTCalcCommon.vb just has some definitions of colors, other variable definitions and 1 routine; you can add routines there as need for your ActiveX.

The file Information.vb has some important information that will be used by the Fibonacci Trader program. Do not change the name of this class or the name of any variable already defined on it.

· The total number of Indicators(classes) that you have in this ActiveX - NCalcs

· The array with the names of your indicators - CalcNames()

Each indicator needs to have an independent class module on the VB.NET project.

Each class module name must mach with the names on CalcNames()

Example: If you have an Indicator that the class module name is DoubleAvgCrossOver the name on the CalcNames() must also be DoubleAvgCrossOver.
These values must be change on the Information.cls, select the object CLASS and procedure INITIALIZE, change Ncalcs and CalcNames() as needed.
There you can type a serial number on the SerialNumber variable, if it is different “” the ActiveX will run only on the Fibonacci Trader with that serial number.
The information class also has the variables:

Version – is a number to identify the version of your DLL, is an integer number
Company – your company name
Author – Your name

The file Moving_Avg_Example.vb has the information about this indicator and the calculation itself.

· In this class select object General and procedure declarations, there you have many variables that will be used to define your indicator, each variable is explained there. Do not change any variable name, add new as needed.

· In this class select Object Class and procedure Initialize, there you have the default values for all variables, change the values as needs.
Note the variable IndicatorName this is the variable that has the name of the indicator that will appear to the user.

· Select object General, procedure Calc, this is the routine that the Fibonacci Trader will call, is there where you will have your calculation or calls for calculations.
The parameters passed are all explained on the routine itself.

3. Project Properties.

Do not change the project properties; just change the Project Name as you want.
Sure you can change project names and create DLLs with different names.
IMPORTANT: When creating a project be sure that the option “Register for COM interop” (under the Compile tab of the project properties) is always checked.

4. Creating the DLL

Compile the DLL, save it always on the FTGT\ folder and register the DLL.

5. To register the DLL use regasm, normally it is in the windows\Microsoft .NET\ Framework folder. It’s recommended you have the .NET Framework v2.0 or later in your machine.

You may want to copy the RegAsm.exe file to your windows folder, so you can use it at command prompt without problems.

Open your command prompt, go to your FTGT folder and type regasm <your DLL Name> / tlb. That will register the example DLL after compiled, and saved on the FTGT folder.

Example: regasm FTCalcExampleNET.dll / tlb

6. How works

When the Fibonacci Trader runs it looks for DLLs on the FTGT folder, when find one it tries to create an object DLLName.Information, if successful gets the information of number of indicators and the names of each one.

With the names it looks to find if the indicator was already signed in before, if not goes and get all defaults that you defined on the initialize routine and creates a new indicator on the users indicators list.

The calc routine receives the bars information on the Bar(,) array, and others all explain in the example.

· The Bar(,) array has 9 elements by number of bars elements.
The Bar(1 , i) has the opens, then Bar(2 , i) has the highs, the Bar(3 , i) has the low, the Bar(4 , i) has the closes, the Bar(5 , i) has the number of ticks of this bar and the Bar(6 , i) has the volume of the bar, where ‘i’ is a bar number. For version 3.05 and later you have also Bar(7 , i) has the date of that bar 36333 = june 22, 1999, Bar (8 , i) has the time that the bars open 1452 = 14:52.. , Bar(9 ,i) can have 4 values, 0 ignore, 1 bar is the first bar of an opening next period, 2 bar is the first bar of an opening highest period, 3 bar is the first bar of an opening next and highest period.
The information that returns to the Fibonacci Trader is the V1(,), V2(,), V3(,), V4(,), Position(,), Price(,) and Live.

· V1(,), V2(,), V3(,), V4(,) will have values for the lines to be plotted, if your indicator has only one line it will use only the V1(,), if 2 will use V1(,) and V2(,) and so on.
Note that for V1(,) there is a variable z1, the values that you calculate are always stored at V1(z1, i), where z1 is always fixed and i is the bar number. Never change the z1 value. For V2(,), V3(,) and V4(,) is the same only difference is you use z2, z3 and z4.

· If you want this indicator to have alarms and trades on screen you need to set the variable Trading=True.

· Position(,) has for each bar what is the position on that bar, this if you want this indicator to be used on alarms on systems. 1 is long, 0 is flat –1, is short.

· Price(,) has the price of the trade, on the bar that changes position this value must be different of zero, if the position on a bar is the same of the previous bar then the price(,) on this bar must be zero.

7. Debugging in VB .NET.

To debug using the VB .NET in run mode do as follows.
Create your project and compile it, creating a DLL in your FTGT folder, if you create the DLL in other folder make a copy to the FTGT folder and register it using the regasm.exe program.

When Fibonacci Trader run it will find the DLL and will try to open the information class and the other classes that you have.

If when you run the Fibonacci Trader your project is running in VB .NET (click run, start with full compile – Ctrl-F5), the Fibonacci Trader will use the code in the VB .NET not the DLL on the FTGT folder.

This way you can debug your project, you can put stops on it and use all debug features of VB .NET.

